The Reaction Force

Peter Politzer1,2

1Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA,
2Department of Chemistry, University of New Orleans, New Orleans, LA 70148 USA

The reaction force $F(R)$ is the negative gradient of the potential energy $V(R)$ of a chemical process along its intrinsic reaction coordinate \(R \). $F(R)$ normally has one or more maxima and/or minima which represent a natural division of the process into regions. Some of these are dominated by structural changes in the reacting system, while others feature electronic as well as structural factors.1 Since activation barriers include contributions from both types of regions, it is possible to determine whether the effects of catalysts, solvents, etc. are primarily structural or electronic.1,2 $F(R)$ defines a “transition-to-products” region, which is characterized by the reaction force constant [the second derivative of $V(R)$] being negative throughout its entirety, not just at the maximum of $V(R)$.3 This is consistent with the concept of a continuum of transient states that comes out of transition state spectroscopy.4